
T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Confinement and propagation characteristics of
subwavelength plasmonic modes

R F Oulton1, G Bartal1, D F P Pile2 and X Zhang1,3,4

1 NSF Nano-scale Science and Engineering Center, 3112 Etcheverry Hall,
University of California, Berkeley, CA 94720, USA
2 Applied Optics Program, School of Physical and Chemical Sciences,
Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001,
Australia
3 Materials Sciences Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA 94720, USA
E-mail: xiang@berkeley.edu

New Journal of Physics 10 (2008) 105018 (14pp)
Received 22 June 2008
Published 28 October 2008
Online at http://www.njp.org/
doi:10.1088/1367-2630/10/10/105018

Abstract. We have studied subwavelength confinement of the surface plasmon
polariton modes of various plasmonic waveguides and examined their relative
merits using a graphical parametric representation of their confinement and
propagation characteristics. While the same plasmonic phenomenon governs
mode confinement in all these waveguides, the various architectures can exhibit
distinctive behavior in terms of effective mode area and propagation distance.
We found that the waveguides based on metal and one dielectric material
show a similar trade-off between energy confinement and propagation distance.
However, a hybrid plasmon waveguide, incorporating metal, low index and high
index dielectric materials, exhibits longer propagation distances for the same
degree of confinement. We also point out that plasmonic waveguides with sharp
features can provide an extremely strong local field enhancement, which is not
necessarily accompanied by strong confinement of the total electromagnetic
energy. In these waveguides, a mode may couple strongly to nearby atoms, but
suffer relatively low propagation losses due to weak confinement.
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1. Introduction

Nano photonics research has seen a surge in sub-micron scale components capable of
transporting and manipulating light. While many of these components are physically smaller
than the wavelength of light in vacuum, their electromagnetic field confinement is typically
limited by diffraction. Squeezing light into regions of space much smaller than the diffraction
limit is possible by using a number of waveguide architectures that store part of the light’s
energy as plasma oscillations at the interfaces of metal and dielectric materials [1]. These so-
called surface plasmon polariton (SPP) modes are capable of confining light to sizes that are
much smaller than the diffraction limit, and despite intrinsic losses, may transmit light for up to
100 wavelengths at telecommunications frequencies.

Candidates for strong sub-wavelength light transport include SPPs of metal cylinders of
circular (cylinder plasmon polaritons (CyPP)) [2, 3] or square cross-section [4], coupled metal
nano-particles [5], metal wedges (wedge plasmon polaritons (WPPs)) [6]–[8], channels in metal
surfaces (channel plasmon polaritons (CPPs)) [9]–[11] and hybrids of conventional dielectric
waveguides (hybrid plasmon polaritons (HPP)) [12]. While these plasmonic waveguides operate
on the same plasmonic phenomenon, the various architectures apparently exhibit different
behavior in terms of confinement, propagation distance and the trade-off between the two.
Understanding these differences is naturally relevant to their future application as visible nano-
scale light sources [13, 14] as well as optical interconnects [15].

In this work, we have compared the confinement and propagation characteristics of
WPP, CPP, CyPP and HPP waveguides, shown schematically in figure 1, using a graphical
parametric representation. This is essentially a graphical figure of merit that allows us to identify
the favorable plasmonic architectures without obscuring the absolute values of confinement
and propagation distance. Such a representation is important as these waveguide plasmonic
characteristics may vary by orders of magnitude for the range of possible structural parameters.
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Figure 1. Schematics of plasmon supporting waveguides under investigation: (a)
metal wedge [6, 7]; (b) groove in metal plane [9, 10]; (c) metal cylinder [3]; and
(d) hybrid of dielectric and plasmon waveguides [12].

While the propagation distance of a mode is well defined, the available measures of mode
area, inherited from conventional waveguide theory, are somewhat inconsistent when applied
to plasmonic modes. This is because plasmonic waveguides can have sharp features that lead
to rapid or discontinuous sub-wavelength variations in the shape of a mode, which is atypical
in conventional diffraction limited waveguides. So for example, the notion of full width at half
maximum as a measure of mode size is most relevant to Lorentzian lineshapes; but using it
to measure the size of a plasmonic mode, whose field intensity may vary by many orders of
magnitude within a small distance, can lead to uncertainty about the true extent of the field
distribution.

In order to consistently quantify the mode confinement, we have used four measures of
effective mode area. We have shown that each measure can lead to a different conclusion about
the absolute and relative confinement strengths. Consequently, we emphasize the underlying
relevance of each measure in gauging a particular physical effect. Two measures that are
frequently used in the literature relate to the spontaneous emission enhancement of nearby atoms
and the statistical measure of the overall localization of the electromagnetic field. The third
measure, the area in which exactly half of a mode’s energy resides, allows us to consistently
compare the degree of overall energy confinement regardless of the shape of the mode. Finally,
the fourth is the commonly used e−1 field criterion to gauge the extent of the mode distribution.

2. Plasmonic waveguides

We begin by briefly outlining the physical principles of WPP, CPP, CyPP and HPP waveguides.
WPPs [6]–[8] and CPPs [9]–[11] are the eigenmodes of metal wedges and grooves,

respectively. The electromagnetic fields of these modes are maximal near the tips of the
respective structures, as shown in the energy density maps in figures 2(a) and (b). These strongly
localized plasmonic modes arise from the increased interaction strength of the surface plasma
oscillations on the adjacent sidewalls and the specific geometry near the tip, which results in
an effective graded index confinement. CPPs arise from strong sidewall interaction across an
air gap leading to confinement within the groove that spreads out from the tip (figure 2(b)).
Likewise, WPPs arise from the weaker coupling of surface plasma oscillations across the metal
wedge. Since coupling of the electric charges is strongest near the narrowest region of the
gap (for CPPs) and film (for WPPs), the tip’s geometry strongly influences the properties of
the mode; for example, sharp tip radii, ρ, and small sidewall angles, θ , lead to strong local
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Figure 2. Distributions of (a)
√

W (r) of WPP mode for θ = 70◦ and ρtip =

5 nm [8]; (b) W (r) of CPP modes for θ = 25◦ and ρtip = 5 nm; (c) W (r) of
CyPP modes for d = 50 nm; and (d) W (r) of HPP mode for a = 200 nm and
h = 5 nm. The disci within each panel show the effective size of the mode using
the four measures, A1, A2, A3 and A4. Note that the plot regions of (a) and (b)
are 4× larger than (c) and (d) and so the disci within these panels must be scaled
accordingly. In each plot, λ = 1550 nm is the vacuum wavelength. The scale of
each plot is displayed in units of the vacuum wavelength, λ = 1550 nm.

enhancement of the field at the tip. On the other hand, blunt tips and large sidewall angles cause
a loss of confinement and mode cut-off.

CyPPs are the modes of isolated metal cylinders embedded in dielectric media. These
modes were highlighted early on as possessing strong sub-wavelength characteristics [2, 3].
More recently, experimental demonstrations have shown that these characteristics are indeed
observable through the spontaneous emission of quantum dots near metal nanowires [16, 17].
Here, the confinement arises from the capacitive coupling of surface plasma oscillations across
the metallic cylinder core leading to energy density distributions as shown in figure 2(c). The
confinement is controlled by the cylinder diameter, d.

Finally, the hybrid waveguide [12] is a composite of a rectangular high contrast dielectric
waveguide and a plasmon supporting metal–dielectric interface separated by a thin dielectric
gap. The coupling between the plasmonic and waveguide modes allows confinement within
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the gap, shown in figure 2(d). This type of structure has potentially favorable confinement and
propagation characteristics due to the involvement of the low loss dielectric waveguide. We
evaluate this assertion in more detail in this paper. We control the confinement of this structure
using the dielectric waveguide side length, a, and the thickness, h, of the dielectric gap region.
Optimal confinement occurs for a ' 200 nm [12] and for small h. For large h, the metal plane
and dielectric waveguide decouple leaving an essentially lossless dielectric waveguide. Here,
we only consider the variation with respect to h and use a = 200 nm throughout.

The physical principles governing the operation of WPP, CPP, CyPP and HPP waveguides
are well established. Therefore, we refer the reader to the excellent articles cited for more
detailed discussions [2]–[12].

In order to ensure a fair comparison of these waveguides, identical metal and dielectric
parameters are used for the telecommunications wavelength of λ = 1550 nm. Here, the
permittivity of silver is εm = −129 + 3.3i [18], the permittivity of the host dielectric is εd = 2.25
(e.g. SiO2) and the permittivity of the high dielectric waveguide in the HPP case is εc = 12.25
(e.g. silicon). In this study, all waveguides were analyzed numerically using finite element
software5 except the metal cylinder, which was treated analytically [19].

3. Measures of confinement and propagation

Plasmonic waveguides provide a route to generating extremely localized electromagnetic fields;
however, the metal constituents impose an intrinsic cost on the distance these fields can travel.
While the propagation has a straightforward definition, we have already discussed in the
introduction the potential difficulties in defining a practical measure of the confinement. In this
section, we provide definitions for the propagation distance and mode area, and in the following
section, we examine their trade-off.

The field distributions of the plasmonic modes of the various waveguide structures maintain
their shape in the plane, while propagating harmonically in the ẑ-direction so that all field
components vary as exp(iβz − iωt). The propagation constant, β, is a complex number that
describes both a mode’s effective wavelength and attenuation as it propagates. The propagation
distance, 3, is defined as the distance a mode travels before decaying to e−1 of its original
power,

3 =
1

2Im{β}
. (1)

There are a number of ways to gauge a mode’s confinement by calculating the effective area
of its distribution. For example, one could devise a statistical measure requiring integration of
a property of the electromagnetic field (e.g. the energy density) over the cross section of the
waveguide. However, when the confinement affects an actual physical process (e.g. the Purcell
effect [20, 21]), a phenomenological measure would be more desirable. Moreover, statistical
measures are sensitive to distribution, potentially leading to inconsistent results for different
mode distributions. We therefore use a third and quite distinct measure that is based on a
common feature of all waveguide modes: it is simply the area in which exactly half of a mode’s
energy resides. We have also examined the commonly used method of evaluating the mode area

5 We used the finite element software FEMLab 3.4 by Comsol. The eigenmode solver was used with scattering
boundary conditions. Convergence tests were performed to ensure that the numerical boundaries do not interfere
with the mode solutions.
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based on the region in which the mode energy drops to e−2 of its peak value. In the following
section, we compare these measures of mode confinement for each waveguide, and show that
they can lead to very different values for the effective mode area.

The first effective mode area, A1, is the ratio of a mode’s total energy density per unit
length and its peak energy density,

A1 =
1

Max{W (r)}

∫
A∞

W (r) dA, (2)

where W (r) is the energy density,

W (r) =
1

2
Re

{
d[ωε(r)]

dω

}
|E(r)|2 +

1

2
µ0|H(r)|2. (3)

|E(r)|2 and |H(r)|2 are the electric and magnetic fields, ε(r) is the electric permittivity,
and µ0 is the vacuum magnetic permeability. Interestingly, A1 is in fact inversely proportional
to the spontaneous emission rate enhancement, or the Purcell factor, Fp, of an atom placed at
the mode’s peak energy density (see appendix). For this reason, it is a widely used measure of
mode area in the literature [12, 14, 21].

Fp ∼
1

2π

A0

A1
, (4)

where A0 = (λ/2)2 is the diffraction limited area of vacuum.
The second measure, A2, is a statistical measure,

A2(F(r)) =

[∫
A∞

F(r) dA
]2

∫
A∞

F(r)2 dA
, (5)

where F(r) is a property of the mode’s electromagnetic field. Here, we use the total energy
density, F(r) = W (r), to evaluate A2 instead of the more commonly used electric field intensity,
|E(r)|2. The use of energy density in the formula provides an indication of the complete
electromagnetic size of the mode and allows us to compare this measure with the others that
we are investigating. While this measure has seen limited use for plasmonics waveguides [15],
it has a firm foundation in optical fiber theory [22].

Both A1 and A2 are appealing as they are easily evaluated from arbitrary field distributions.
However, care must be taken when using them to compare plasmonic waveguides: A1 depends
on the peak energy density, so its value may not reflect the true extent of a mode’s field
distribution, where rapid field variations over small distances occur. Such variations are common
in plasmonic components, especially at the sharp tips of WPP and CPP waveguides. While A1

can be useful to quantify local field enhancement (e.g. the Purcell effect), A2 should be a better
measure of the true spatial extent of a mode. In the case of Gaussian beams it provides a measure
of the area, πr 2

0 , where the Beam radius r0 is half the standard deviation, however, it is unclear
how a plasmonic mode’s energy density distribution would affect the result.

The aim of defining the third effective mode area, A3, is to consistently gauge confinement
for arbitrary field distributions. This is possible provided the definition is based on a common
feature of all distributions. We propose to evaluate the minimum area in which a set proportion,
η, of a mode’s energy resides. Since the measure does not depend on the peak value of the field,
it should be less sensitive to rapid field variations than A1. Furthermore, since η is generic to any
field distribution, A3 should also be a geometry-independent measure of confinement. As there
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is no explicit formula for this calculation, it requires us to solve the following minimization
problem,

A3 = min
f (r)

∫
A∞

f (r) dA,

s.t.
∫

A∞

[ f (r) − η] W (r) dA = 0, (6)

where f (r) is some unknown shape function that encompasses a fraction η of the mode’s
energy density and η = 0.5 in the current study. Solving for f (r) in an arbitrary plasmonic
geometry would be an unnecessarily complicated task, so we have devised a straightforward
approximation, which we anticipate will work for most modal field distributions. Here, we
assume that the optimum f (r) is a step function bounded by a constant energy density contour,
W0, of the mode. To find A3, we iteratively solve the minimization problem of equation (6)
using,

f (r) = 0, if W (r) < W0,

f (r) = 1, if W (r)>W0, (7)

where W0 corresponds to the contour containing η of the mode’s energy. A3, follows from
integration over the shape function, f (r) in equation (6). We can also use equations (6) and (7)
to evaluate the fourth and final definition of mode area, A4. By choosing, W0 = γ max{W (r)},
we can compute the area corresponding to when the peak energy density decays by a factor γ .
This measure is widely used in the literature although the choice of γ is not so consistent, with
values such as e−2 [3, 4, 23], 1/10 [7, 8] or 1/2 [10]. In this paper, we consider γ = e−2. Despite
its widespread use, we will show that A4 is just as inconsistent as A1 and can lead to significant
underestimation of the true energy confinement of a plasmonic mode.

Figure 2 presents the energy density distributions of the fundamental modes of the
plasmonic structures under investigation. Alongside, we illustrate the strength of confinement
according to the four aforementioned measures, A1, A2, A3 and A4, where the radius of each
discus, ri , is chosen such that Ai = πr 2

i . Interestingly, not only are there stark differences
between each measure of a field distribution, but the choice of measure also determines which
waveguide has the strongest confinement. For example, the result of A1 and A4 for WPPs and
CPPs differ dramatically; while A2 and A3 are much closer in value. In fact, according to A1

and A4, WPPs have the stronger confinement, whereas according to A3, it is the CPPs that prove
favorable. The same story is seen when comparing HPPs and CyPPs; A1 indicates that HPPs and
CyPPs have similar confinement, but A3 shows that it is much stronger for CyPPs. Furthermore,
the differences between the field distributions and their associated effective mode areas are quite
striking. In particular, WPPs are far more spread out than their field distribution suggests, even
though we have plotted

√
W (r) in figure 2(a).

We have compared the various measures of mode confinement more thoroughly in
appendix B, to which we refer the reader for a more detailed appraisal. Here, we merely
summarize the capabilities of A1, A2 and A4 for measuring confinement. The result of A1 is
typically the smallest since rapid field variations in small distances can give the impression that
a mode’s field is tightly confined, while most of the energy resides in a larger region of space;
for example, the WPP distribution in figure 2 (a). We also show in appendix B that the tip radius
of the wedge and groove structures predominantly affects the value of A1, but not A2 or A3.
Consequently, the Purcell effect is not necessarily dependent on total mode localization, but on
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the local field enhancement. Measure A2 displays the largest effective area for all the waveguides
studied in this paper as it consistently represents more than 50% of a mode’s energy. (See
figure B.1, appendix B.) In this case, the A2 measure is good for gauging the energy
confinement; however, A2 does not consistently represent the same amount of energy for all
waveguides. A4 appears to be the most inconsistent of all the measures of mode area and as
a statistical measure, A2, is more appealing due to a greater level of consistency. For WPPs,
A4 is susceptible to the rapid variation of the energy density within small distances and so
underestimates the energy confinement, whereas for CPPs, it almost leads to an overestimate.
Since A4 is so inconsistent, we do not consider it further in this study. By definition, A3 is the
most reliable indicator of the relative energy confinement of different waveguides.

4. Parametric analysis of plasmonic waveguides

To understand the merits of the various plasmonic waveguide structures, it is necessary to have
a direct method for comparing their confinement and propagation characteristics. Berini and
co-workers define three dimensionless benefit-to-cost ratios as figures of merit [23]. One of
these considers the square root of the confinement area as the benefit with the cost being the
propagation loss. Here, we do not explicitly define a figure of merit, but rather choose to display
the confinement area and propagation distance in a parametric plot. This graphical figure of
merit allows direct comparison of any waveguide geometry, while maintaining a reference to
the absolute values of confinement and propagation distance. Each plasmonic waveguide is
represented by a trajectory along which a single geometrical property is varied, for example, the
sidewall angle, θ , or the tip radius, ρ, for WPPs and CPPs; the diameter of the metal cylinder, d,
for CyPPs; and the low index region’s gap width, h, for HPPs. These parametric plots allow us to
identify favorable plasmonic architecture without obscuring the absolute values of confinement
and propagation distance.

4.1. The trade-off between confinement and propagation distance

Figure 3 shows parametric plots of normalized propagation distance, 3/λ, versus normalized
effective modes area, Ai/A0, where A0 = (λ/2)2 is the diffraction limited area of vacuum.

Figure 3(a) depicts the A1 measure, with the WPP, HPP and CyPP waveguides all having
similar capabilities in terms of the overall confinement strength. Since A1 indicates the strength
of the Purcell effect (see appendix A), these modes can potentially couple strongly to atoms
placed near the peak of their electric field. It is notable, however, that WPPs have a longer
propagation distance for the same degree of confinement, making them all the more appealing
for this purpose.

So why do WPPs have such favorable characteristics? This is because the propagation
distance is determined by the total energy localization and not by the local field enhancement.
While the metal tip induces a strong enhancement of the local field, most of the mode’s energy
resides in the lossless surrounding dielectric; hence its propagation loss is relatively small. We
can clearly see this when using the measure A3 (as shown in figure 3(b)), which shows that
WPPs, CPPs and CyPPs, in fact, have similar total energy confinement versus propagation
characteristics.

The trajectories of WPPs, CPPs and CyPPs in figure 3(b) suggest that the geometry
of a plasmonic waveguide does not drastically affect the trade-off between confinement and
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Figure 3. Parametric plots of normalized propagation distance 3λ and
normalized effective mode area: (a) A1/A0 and (b) A3/A0. A similar trend results
when considering the A2 measure of mode area; however, A2 does not represent
the same proportion of mode energy for WPPs when compared with the other
waveguides (for a comparison of A2 and A3, please see appendix B.)

propagation loss. Consequently, the hybrid plasmon waveguide is remarkable since it follows
a completely different trajectory showing improved characteristics. The question of whether
pure plasmonic geometries follow similar trade-offs between confinement and loss for the full
range of design parameters remains an open one; however, it is clear that hybrid plasmonic
waveguides offer improvements. These improvements become even more pronounced when the
other geometries have semiconductor-based host materials [12]. While, high index dielectrics,
such as semiconductors, introduce significant losses to pure plasmonic waveguides, these
materials are intrinsic to the confinement mechanism in the hybrid geometry.

4.2. Nano-scale focusing capabilities

Recently, it was shown that energy can be efficiently concentrated into CyPPs [24, 25] and
WPPs [7] by slowly varying the confinement parameter, d and θ , respectively, along the
propagation direction. Figure 3(b) illustrates how this nano-scale focusing is possible: the range
in confinement strength indicates how much of an increase in local energy density we can
expect from the focusing; and the range in propagation distance shows how slowly a waveguide
parameter can be varied to ensure the efficient transfer of energy to the nanoscale.

CyPPs, which were in fact the first geometry proposed for nanoscale focusing [24, 25],
offer the strongest overall energy confinement of all the structures that we have considered. A
particular strength of CyPPs is their broad range of mode areas, which spans almost three orders
of magnitude, effectively linking conventional optical length scales with the nanoscale. CPPs
are also interesting in this respect as they can span almost the same range in effective mode area.
WPPs and HPPs provide just over one order of magnitude variation in effective mode area. In
the case of WPPs this limits the effectiveness of the focusing. On the other hand, this capability
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in HPPs provides an intriguing approach for linking conventional waveguide technology with
subwavelength fields.

5. Summary

We have examined the confinement and propagation characteristics of four plasmonic
waveguide geometries at the telecommunications wavelength, λ = 1550 nm. These plasmonic
modes have quite distinct field distributions, which has made it very difficult to consistently
gauge their confinement strength. We examined four approaches for calculating the effective
mode area, i.e. a measure of confinement strength. However, none of these measures consistently
concurred on either the absolute or relative confinement strengths of all the waveguide modes
studied. It was therefore necessary to interpret each measure independently and emphasize its
underlying relevance to a particular physical effect. A1, which relates to the Purcell effect,
depends heavily on the maximum local field enhancement and, as such can underestimate the
extent of a mode’s overall field distribution. A2 is a decent statistical measure of the total energy
confinement, but only A3, by definition, is consistent in gauging the energy confinement of all
the waveguides. The commonly used approach of evaluating the area, A4, of the region in which
the peak mode energy falls by e−2 was also found to be inconsistent.

To facilitate a detailed comparison of the various architectures, we have used a graphical
approach to represent the confinement and propagation distance over a range of waveguide
parameterizations. We summarize our main conclusions below.

5.1. WPPs

Wedge plasmons are the most irregular of the plasmonic waveguides investigated here as their
properties are strongly dependent on the tip geometry. Fabrication challenges are potentially
limiting for this geometry as the strongest confinement is reliant upon sharp tips and very
acute wedge angles. Recent experiments at infrared wavelengths [8] have examined wedges
with sidewall angle of 70◦ and tip radii approaching 25 nm, which yield impractical field
confinement. Despite their unique field distribution, which leads to effective mode areas
that are quite distinct from the other plasmonic modes studied, WPPs still follow a general
trend of confinement versus propagation distance exhibited by all the conventional plasmonic
waveguides studied. WPPs are potentially attractive for the enhancement of the atomic emission
process near their tips. They can couple strongly to atoms due to very strong local field
enhancements and may propagate long distances because their overall energy confinement is
relatively weak.

5.2. CPPs

Channel plasmons are also quite strongly dependent on the radius of curvature of the tip
and the steepness of the sidewalls (i.e. angle, θ ). As in the case of WPPs, fabrication of the
necessary sharp tip radii for strong confinement and steep sidewalls is impractical with current
fabrication technology. To date, channel plasmons have only been observed for relatively weak
confinement [10, 11] in the regime close to cut-off. Nevertheless, the results have been quite
impressive with demonstration of plasmonic interferometers and ring resonators with nearly
diffraction limited modes [11].
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5.3. CyPPs

Despite the simplicity of the cylinder geometry, CyPPs perform extremely well in theory
with respect to both spontaneous emission enhancement and overall energy confinement. In
particular, the broad range of confinement strengths achievable by varying just the diameter
makes it potentially the best geometry for linking conventional optical length scales with
the nanoscale. Nevertheless, recent experiments have shown only modest enhancements in
spontaneous emission [16, 17] and a practical implementation of nanoscale focusing with metal
cylinders has yet to conclusively match predictions [26].

5.4. HPPs

This type of structure is particularly appealing due to its compatibility with integrated photonics
systems, such as silicon on insulator-based photonics architectures. HPPs are capable of strong
enhancements of spontaneous emission as well as overall energy confinement, making them
attractive also for nano-scale focusing. At the same time, HPPs have favorable propagation
characteristics showing significantly improved propagation distance for the same degree of
confinement when compared with the other waveguides in this study. The hybrid plasmon
waveguide is amenable to standard lithography and thin film deposition techniques, making
it an attractive architecture for nano-optics research both in terms of technological applications
and pure science.
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Appendix A. Relationship between the Purcell factor and the effective mode area, A1

The first measure of field confinement, A1, is related to the Purcell factor, which quantifies
a mode’s ability to enhance the spontaneous emission rate of a near-by atom. In the case of
a waveguide, we equate the stored electromagnetic energy per unit length with the vacuum
fluctuation energy, 1/2h̄ω, and the one-dimensional density of states, ρ1D = ng/(2πc) along the
waveguide’s degree of freedom,

A〈Watm〉 =
1

2
h̄ω

ng

2πc
, (A.1)

where ng = d[ωRe{β/k0}] dω is the group index of the waveguide mode. Here, we have assumed
that the mode’s energy is distributed over an area A, which will be our measure of confinement,
while the vacuum fluctuation energy density at the atom is 〈Watm〉. The angular brackets are to
indicate that the field corresponds to that of the vacuum fluctuations. Similarly, for an atom in an
unbounded medium of refractive index n, we equate the time averaged electromagnetic energy
density, n2ε0|E0|

2 (noting that the electric and magnetic energy densities are equal), with the
vacuum energy and the density of states in vacuum,

n2ε0〈|E0|〉
2
=

1

2
h̄ω

ω2n3

π 2c3
. (A.2)
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Figure B.1. Parametric plots of waveguide confinement: (a) A1/2 versus A1 and
(b) A1/2 versus A2. The tip radius, ρ = 10 nm for both metal wedge and groove.

The Purcell factor is the ratio of the fluctuating electric field intensities of equations (A.1)
and (A.2) [21]. When the emission medium in both vacuum and the waveguide share the same
refractive index, n,

〈Watm〉 = n2ε0〈|Eatm|〉
2 1

2

[
1 +

µ0〈|Hatm|
2
〉

ε〈|Eatm|2〉

]
, (A.3)

so that,

Fp =
ng

n2π A

(
λ

2

)2

2
[

1 +
µ0〈|Hatm|

2
〉

ε〈|Eatm|2〉

]−1

. (A.4)

Taking A0 = (λ/2)2 to be the diffraction limited area of vacuum and placing the atom at
the maximum of the field we find

Fp '
1

π

ng

n2

A0

A1
. (A.5)

Here, we have assumed that the electric and magnetic energy densities in the vicinity of the
atom are approximately equal. This approximation is commonly made in the literature, however,
it is only valid for cases of weak confinement. Despite this, the measure A1 (equation (4)) is a
good indication of a waveguide’s ability to enhance spontaneous emission.

Appendix B. Comparison of the effective mode areas, A1, A2 and A3

In this section, we expand on our analysis of the various effective mode areas that we defined in
the main text.

Figures B.1(a) and (b) plot A1 and A2 against A3, respectively. For CyPPs and CPPs, A1

(figure B.1(a)) is approximately the same as A3, and so represents about 50% of the mode’s
energy across a reasonably broad range of the respective waveguide confinement parameter.
Consequently, for moderate confinement, A1 provides a reasonable indication of both the Purcell
effect and the total energy confinement in these waveguides. For strong confinement, A1 and A3

are very different for all the waveguide studied: for CyPPs and CPPs, A1 represents more than
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the same comparison for ρ = 10 nm parameterized by the sidewall angle, θ .

half of a mode’s energy, while for HPPs, it represents less. WPPs follow a completely different
trend from the other waveguides. Based on these observations, A1 is not a good measure of the
electromagnetic energy confinement of an arbitrary plasmonic mode. Strictly, it should be used
as a measure of the Purcell effect.

In contrast, the A2 measure (figure B.1(b)) is more consistent for all the waveguides
examined. In all cases, A2 represents more than 50% of a mode’s energy across the full range
of parameterization and for all the plasmonic waveguides studied. The principal difference
between A2 and A3 appears to be a constant factor; however, a closer examination shows that
this is not strictly the case. While CPPs and CyPPs follow the trend A2 ≈ 3A3, WPPs and HPPs
have factors that vary between 1.5–2 and 2–3 respectively. Care is needed when using A2 to
compare different plasmonic waveguides: for example, A2 represents less of the WPP’s energy
than the other modes, giving an effective area that is about two times smaller.

All four measures give very different effective mode areas for WPPs. A1 and A2

consistently represent a smaller proportion of a WPP’s overall energy, which give them
a distinctive confinement characteristics to the other waveguides. To examine this further,
figure B.2 shows the comparison of A1 and A2 for CPPs and WPPs, but this time with a variable
tip radius, ρ = [2.5, 100] nm. Sharper tips increase A1 in both waveguides with a much smaller
apparent change in A2. Therefore, the tip radius effectively controls the local field enhancement,
having only a weak effect on the overall confinement of electromagnetic energy. For example,
the difference in A3 between ρ = 100 nm and ρ = 2.5 nm for WPPs is only a factor of 2. On the
other hand, the field near the tip is localized to such an extent that the A1 measure is increased by
more than 20 times for the same change of tip radius. CPPs follow a similar trend, although for
very large tip radii (ρ > 25 nm) confinement is lost more rapidly than for WPPs. This is likely to
be due to the way in which confinement is lost in these geometries: when CPPs lose confinement
they must de-localize into the groove, while WPPs can spread out radially in directions that are
far less limited.
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